
Development Process Overview

DII COE I&RTS: Rev 2.0 October 23, 1995 3-1

3.0 Development Process Overview

This chapter describes the development process in detail. A powerful feature of
the overall development process is the concept of automated integration. This
means that automated tools are used to combine and load segments, make
environmental modifications requested by segments, make newly loaded
segments available to authorized users, and identify places where segments
conflict with each other. Traditional system level integration then becomes
primarily a task of loading and testing segments. Traditional integration tasks
are pushed as far down to the developer level as possible.

Prior to submitting a component to DISA, a developer must

¥ package the component as a segment,
¥ demonstrate COE compliance through tools and checklists,
¥ test the segment in isolation with the COE,
¥ provide required segment documentation, and
¥ demonstrate the segment operating within the COE.

The Software Support Activity (SSA) enters the segment into the on-line library
for configuration management purposes and confirms COE compliance by
running the same suite of tools as the developer. The SSA then tests interaction
between segments and the impact on performance, memory utilization, etc. Since
segments typically can only interact through the COE, the task is greatly
simplified and the need for human intervention in the process is minimized.

An automated integration approach is a practical necessity. Not only are
segments contributed by different services and agencies, but individual
segments are created by a large body of different developers. Traditional
integration approaches rapidly break down with the need to communicate to
such a large number of people while the costs incurred to resolve inter-module
conflicts at system integration time become prohibitive.

This chapter begins with a consistent approach to version numbering, followed
by a detailed look at the development phases. The chapter ends with some
special considerations for how to migrate legacy systems rather than developing
from scratch. Because of the special importance of the on-line library, Chapter 7
is devoted to it and its features. For the present chapter, it is sufficient to note
that there is a configuration management repository for segments.

Development Process Overview

3-2 October 23, 1995 DII COE I&RTS: Rev 2.0

 Integration and testing of a segment within the COE is the
responsibility of the segment developer. Verification of COE-
compliance, integration of the system as a whole, and
interoperability testing are performed by government integrators.

Version Numbering

DII COE I&RTS: Rev 2.0 October 23, 1995 3-3

3.1 Version Numbering

The COE concept requires the ability for segments to state dependencies upon
other segments. Dependencies may exist because one segment requires that
another segment also be loaded, or that two segments conflict and can not both
be present in the system at the same time. A third type of dependency can exist
because segments are sometimes version dependent, and it must be possible to
make meaningful comparisons of successive segment releases. A consistent
approach to version numbering is thus a mandated feature of the COE standard.
Version numbers are applied to all segments and all segment patches.

COE-based systems consist of a collection of segments. Each segment has its own
individual version number. When a version number is applied to a COE-based
system as a whole, the version number refers to the COE, not the version for
each individual mission application or segment. While this may seem confusing,
it is consistent with commercial practice. For example, one refers to the version
of Microsoft Windows (analogous to the DII COE) as well as individual
applications like Word or Excel (analogous to mission applications like GSORTS,
or to COTS products like Netscape).

COE compliance mandates adherence to the version numbering scheme outlined
in this section. Version number digits are frequently tied to the signature level
required to authorize a product release. Hence they have programmatic
importance as well as technical importance for distinguishing between segment
upgrades.

3.1.1 Segment Version Numbers

Segment version numbers consist of a sequence of 4 digits, separated by decimal
points, of the form

a.b.c.d

where each of the digits have a specific meaning. The first digit is a major release
number and indicates a significant change in the architecture or operation of the
segment. Backwards compatibility is not guaranteed when the major release
number is incremented. The second digit indicates a minor release in which new
features are added to the segment, but the fundamental segment architecture
remains unchanged. A minor release may necessitate relinking to take advantage
of updated API libraries, but APIs are preserved at the source code level except
possibly on a documented and approved case-by-case basis. The third digit is a
maintenance release number. New features may be added to the segment, but the
emphasis is on optimizations, feature enhancements, or modifications to
improve stability and useability. APIs are preserved and do not generally

Version Numbering

3-4 October 23, 1995 DII COE I&RTS: Rev 2.0

require segments to recompile or relink during successive releases. The fourth
digit is a developer release number.

The first three digits are assigned by DISA, but the final digit is reserved for
developers. The fourth digit is updated to keep track of successive releases
during the integration process..

Version number digits are incremented to indicate later releases of a segment.
This scheme provides a readily apparent method for comparing successive
releases of a segment. For example, a segment with version number 2.1.6.1 is a
newer version than 2.1.0.5. Moreover, according to the scheme outlined, APIs are
preserved. Segments using version 2.1.0.5 can usually be expected to work
without any modification when loaded on a system using the 2.1.6.1 version.

When specifying version dependencies, this scheme also allows segments to
indicate the degree to which they are version sensitive. For example, suppose
Segment A requires use of Segment B. Segment A may indicate that it requires
Segment B, version 2.3 indicating that any maintenance release of version 2.3
(e.g., 2.3.2.0, 2.3.1.2) is acceptable. The same approach works for specifying
segment conflicts.

It is a violation of the COE to fail to increment version numbers
between subsequent segment releases. This applies to all segments
whether they are COTS segments, COE component segments, or
mission application segments.

3.1.2 COTS Version Numbers

COTS products will typically already have version numbers assigned to them,
but the convention used is vendor specific. This makes it difficult to make
meaningful version comparisons in the same sense as the previous subsection. A
further complication is that COTS products must often be configured before they
can be properly utilized in a COE-based system. For this reason, COTS segments
are also assigned version numbers.

A COTS version number consists of a primary and secondary version number
separated by the '/' character. The primary version number follows the same
convention described in the previous subsection, while the secondary version
number is the version number assigned by the vendor. Comparisons and
dependency specifications are always performed using only the primary version
number.

Version Numbering

DII COE I&RTS: Rev 2.0 October 23, 1995 3-5

For example, the DII COE requires an increase in the amount of shared memory
configured in the vendor supplied Solaris 2.3 Unix Operating System. A primary
version number, such as 2.1.3.6, is assigned so that the operating system is
referred to as version 2.1.3.6/SOL-2.3. Similarly, the X11R5 version of an
X Windows server might have a version number assigned such as 2.3.0.4/X11R5.

COE-based systems are presently composed of segments contributed from
ongoing programs which may already have an established convention for
version numbering. A secondary version number may also be attached to such
segments. As with COTS segments, only the primary version number is used in
the COE.

3.1.3 Patch Version Numbers

Patches are indicated by appending the letter 'P' and a single number to the
primary version number. For example, patch 12 to version 2.1.3.5 of a segment
would be designated as version 2.1.3.5P12. Patch 4 to the Solaris Operating
System example in the previous subsection would be designated as
2.1.3.6P4/SOL-2.3.

Process Flowchart

3-6 October 23, 1995 DII COE I&RTS: Rev 2.0

3.2 Process Flowchart

Figure 3-1 is a detailed flowchart of the development process, beginning with
registering a segment to be developed and ending with ultimately installing the
segment at an operational site. The major development phases are delineated by
dashed lines in the figure and correspond to the subsections which follow. This
process flow is the same for all segments, including patch segments. As can be
seen, the process is indeed largely automated.

By necessity, the figure is abbreviated and does not show several key elements
of the development process such as error tracking and reporting, a configuration
control board, DISA architecture groups, or configuration management and
quality assurance. Each of the elements is strongly implied by Figure 3-1, but
their description is beyond the scope of this document.

At several places in Figure 3-1, segments are added to the on-line library, COE
Software Repository System (CSRS). Segments are compressed and encrypted
within the CSRS to reduce disk space and for added security. Segments are also
encrypted and compressed when they are transmitted electronically across the
network. These actions are performed automatically and are transparent to the
user.

While electronic transmission of segments across the network is the preferred
approach, it is not possible in certain cases. It is not practical to transmit the
operating system, X Windows, or Motif across the network due to licensing
restrictions and their size. Other segments, especially database segments, may be
too large to send electronically or may have a security classification that requires
special handling and tracking. Figure 3-1 should be understood with this in
mind. Electronic transfer is performed when feasible, but an alternate route
using tape or other media is used as well when required.

Figure 3-1 also shows several places, especially in the Segment Integration
phase, where a "Notify" action occurs. This is an electronic notification of status
to the segment developer, to the development community, or to the user
community. The subsections below describe notifications in more detail, but
obviously notifications of status are sent only to the cognizant parties, not
necessarily to the entire community. Notification is accomplished by email,
World-Wide-Web, newsgroups, and "paper" as appropriate.

The very nature of COE-based systems dictates that security measures be taken
to prevent unauthorized disclosure or access to sensitive information, including
project status or system problem reports. For this reason, access to software and
project information is divided between Internet and SIPRNET with firewalls to

Process Flowchart

DII COE I&RTS: Rev 2.0 October 23, 1995 3-7

restrict access. This level of detail is not necessary for the overview presented in
this chapter and has been omitted from Figure 3-1.

A

MakeInstall
(optional)

System
Test

B
Fail

Pass

Test Seg APIs

mkSubmitTar

submit

C

Segment
Submission

Yes

TestRemove

TestInstall

No

Yes

Load & Config COE

Valid
COE?

Start

Register Segment

Download Segments

Write & Unit
Test Code

Create Seg
Structures

Valid
Seg?

No

Fail

A

Pass B

Segment
Registration

Segment
Development

CSRS

Notify

Process Flowchart

3-8 October 23, 1995 DII COE I&RTS: Rev 2.0

Figure 3-1: Development Process Overview

Process Flowchart

DII COE I&RTS: Rev 2.0 October 23, 1995 3-9

Stop

Operational
Site

CSRS

D

Accepted
Segment

CSRS

Notify Accepted

Create
Tape

Remote
Install

Segment
Installation

Fail

Notify Pass

Notify Reject

C

Receive
Segment

Valid
Seg?

Submit to
CSRS

Notify Submitted

Test In
Isolation

Notify Received

Results?
Fail

Notify Reject

Pass

Test Advance

CSRS

CSRS

Define Variant

System
Test

Pass

D

Segment
Integration

Fail

Pass

Figure 3-1: Development Process Overview (cont.)

Process Flowchart

3-10 October 23, 1995 DII COE I&RTS: Rev 2.0

3.2.1 Segment Registration

Segment Registration is the entry point into the development process. It's
purpose is to collect information about the segment for publication in a segment
catalog. Perhaps the most difficult part of maintaining a software repository is
simply knowing what capabilities exist. This is the purpose of maintaining a DII
segment catalog. The segment catalog is available on-line through an HTML
browser and contains information provided by developers in a segment
registration form. Keyword searches can be performed on the catalog by
developers to identify reusable segments, or by operational sites to find new
mission applications.

The segment registration form includes the following information:

¥ segment name
¥ segment prefix
¥ segment directory name
¥ list of related segments
¥ program management point of contact
¥ technical point of contact
¥ process point of contact
¥ estimated memory required by the segment
¥ estimated disk storage requirements
¥ platform availability (PC only, Solaris only, etc.)
¥ short paragraph describing the segment features
¥ list of keywords for use in catalog searches
¥ unclassified picture of the segment user interface (GIF, JPEG, or X11

Bitmap format).

Not all information provided at segment registration time is made available to
the community at large. The technical point of contact is available only to the DISA
Engineering Office in the event that technical questions or issues arise during
segment integration. The process point of contact is the individual authorized by
the segment program manager to actually submit the segment, or to receive
status information and notifications. The program management point of contact is
the only individual authorized to commit schedule or resources, and is the only
individual authorized to release information about the segment to the
community at large. The three points of contact are selected by the
service/agency responsible for the segment. Services may elect to designate a
single individual for all three points of contact, and may include an alternate
point of contact for each category.

Each segment is assigned an identifier called a segment prefix. The segment prefix
is a 1-6 alphanumeric character string which is used to prevent naming conflicts

Process Flowchart

DII COE I&RTS: Rev 2.0 October 23, 1995 3-11

between segments. Use of the segment prefix is required in any situation where
there is the possibility that two different segment developers might choose the
same name for a public symbol such as an environment variable, executable,
API, or library. Two segments may in fact have the same segment prefix as long
as there is no possibility that public symbols will conflict.

Segment directory names are often the same as the segment prefix, but they do
not have to be. Directory names can be any directory name that conforms to
rules imposed by the operating system, provided they consist only of printable
characters, begin with an alphanumeric character, and are not already in use by
another segment. It is recommended that directory names be limited to 14
characters to avoid porting problems.

Referring to Figure 3-1, two steps constitute the Segment Registration phase:

1. Register the segment. The segment registration form can be submitted in
written form, through email, or in HTML format. Appendix E contains
more information on how to do this. Once the developer submits the
registration form, the information in entered into the CSRS and
confirmation is sent to the process point of contact. Segment information
is entered into the segment catalog with a tentative release date for the
segment. The segment prefix and directory requested will be granted
unless they have already been assigned to another developer's segment.

2. Download segments required for development. When notification is received
that segment registration was successful, developers may download
COE component segments, developer's toolkit, object code libraries, and
other segments required for software development. Appendix D
provides more information on how to download segments, tools,
libraries, etc. It also provides information on how to access and search
the on-line segment catalog.

3.2.2 Segment Development

The COE approach is designed to be non-intrusive; it places minimal constraints
on how developers build, test, and manage software development. Developers
are free to establish a software development environment that is best suited for
their project. The COE requires only that deliveries be packaged as segments,
that segments are validated before submission, and that segments are tested in
the COE prior to submission. Figure 3-1 assumes this degree of freedom and
omits steps such as design reviews and code walk throughs that are an expected
part of any development effort.

Process Flowchart

3-12 October 23, 1995 DII COE I&RTS: Rev 2.0

1. Load and configure the COE. Most developers will find that the COE will
meet their needs as is. However, for some developers the bootstrap COE
may need to be extended to increase shared memory size, message
queue sizes, add sockets, etc. Any changes to the downloaded COE
must be carefully recorded as environment extensions. It is the
responsibility of the segment to request that these extensions be made
by the COE installation tools as the segment is installed.

2. Verify that the COE is valid. The tool VerifyCOE checks the integrity of
the COE and should be run any time a modification is made to the
bootstrap COE to ensure that the resulting environment is still COE
compatible.

3. Write and unit test code. Develop and test a baseline version of the new
software segment as independently of COE software as is possible, but
within an environment as nearly identical to the actual runtime
environment as is possible. The purpose of this step is to resolve
problems within the segment and identify potential interface problems
between the segment and the COE, especially the runtime environment.
The simplest approach is to launch the segment executables from an
xterm window and look for software bugs or conflicts with the COE.

4. Create segment structures. Chapter 5 identifies information required to
describe a segment through use of segment descriptors. Decisions
should be made at this point whether to package data and software
together or as separate segments, how best to include any required
environment extensions, how to handle segment installation and
removal, which features should be icons versus menu entries, etc. Focus
in the preceding step was to verify that the segment is correct internally
while this step shifts focus to validating that the segment can interface
externally with the COE.

5. Validate the segment. The tool VerifySeg must be run against all
segments to confirm Category 1 COE compliance. VerifySeg must be
rerun when any file within the segment that will be present at runtime
is modified. This includes segment descriptor files, datafiles, and
executables. A segment can not proceed any further in the process until
VerifySeg confirms its validity. COE tools used later in the process
will reject a segment that has not passed VerifySeg.

6. Install and test the segment. The tool TestInstall allows a segment that
is already present on the disk to be installed exactly as if it had been
loaded from distribution media at an operational site. When installed
successfully, it should be accessible from any operator login that has a

Process Flowchart

DII COE I&RTS: Rev 2.0 October 23, 1995 3-13

profile set up to include the segment. At this stage, it should not be
necessary to launch executables from a command line or any other
interim technique. If the installation and test are not successful, the tool
TestRemove will undo the side effects of installing the segment, but
will not delete the segment from disk.

7. Create an installation tape. This step is optional, but recommended. The
tool MakeInstall creates an installation tape than can then be loaded
through tools in the System Administration application just as a site
operator will do.

8. Perform a system test. Whether the segment has been installed from tape,
created by MakeInstall, or through the TestInstall tool, a system
level test should be performed to identify any problems with the COE
or other segments for which the developer is responsible.

9. Test segment APIs. This step applies only to those segments, typically
COE component segments, which contain APIs that other segments will
use. A test suite is required for all segments which submit APIs.

3.2.3 Segment Submission

Submitting a segment is an automated process of compressing and encrypting
the segment. The segment must be in the "pre-MakeInstall" format meaning that
alterations made during the installation process have not been performed. These
alterations are usually done by a PostInstall script, see Chapter 5, which
may create data files, perform operations based on hardware type, etc.

1. Compress and encrypt the segment. The tool mkSubmitTar performs this
task on a "pre-MakeInstall" formatted segment. The directory Integ,
described in Chapter 5, must contain an annotated description of output
from VerifySeg. If applicable, a test suite must be included for all
APIs.

2. Submit the segment. The tool submit does this electronically across the
Internet. Segments submitted via tape must be a relative tar of the
output from mkSubmitTar, not the output of MakeInstall. Multiple
segments can be delivered on the same tape provided that there is only
one segment per physical tar tape segment.

3.2.4 Segment Integration

Segments received, whether by tape or electronically, are placed into the
software repository (CSRS), tested in isolation, and then tested as part of the

Process Flowchart

3-14 October 23, 1995 DII COE I&RTS: Rev 2.0

deliverable system. Validation is performed at each step using exactly the same
tool set that the developer used during the development phase. This approach
allows many integration responsibilities to be performed by the developer with
only a need to validate they were performed correctly when a segment reaches
the traditional system integration phase.

Process Flowchart

DII COE I&RTS: Rev 2.0 October 23, 1995 3-15

The process steps performed from this point on in Figure 3-1 are the
responsibility of DISA, not the developer. They are described here because
developers are still an active part of the process in isolating and correcting
problems.

1. Receive segments. Segments received electronically are placed in an
isolated and safe disk directory. Segments received via tape are placed
there manually by a member of the DISA configuration management
team. The process point of contact is notified that the segment has been
received and is in process.

2. Validate the segment. VerifySeg is run against the segment submitted
and the results are analyzed. Discrepancies between the output of
VerifySeg produced by the developer and that produced by the
integrator can occur for a number of harmless reasons. These are
reconciled against the annotated results provided by the developer
when the segment was submitted. Segments which fail to pass
VerifySeg or the reconciliation process are rejected and the process
point of contact is notified.

3. Submit segment to the CSRS. Segments which have been validated by
VerifySeg are compressed, encrypted, and placed in the software
repository. Notification that the segment is now in the repository is sent
to the process point of contact.

4. Test segment in isolation. The segment is loaded on a test system with the
minimal segments required for the operational system. If the test fails,
the process point of contact is notified with a detailed description of the
problem. The segment remains in the repository but it is not available to
anyone except the developer.

5. Advance segment to test level. Segments which work correctly in isolation
are advanced to the next testing level and are so noted in the CSRS. The
process point of contact is notified and developers needing the new
segment are notified that a beta version is available.

6. Define variants. Most segments will not be loaded on every workstation.
One or more variant definitions are created which contain the segment.

7. Perform system test. Variants containing the segment are loaded onto
workstations for system testing. Those which fail are retained in the
CSRS, and a list of problems are sent to the process point of contact.
Depending upon the severity of the problems, the segment may be

Process Flowchart

3-16 October 23, 1995 DII COE I&RTS: Rev 2.0

rejected, provisionally made available for other developers to continue
working, or accepted with known problems.

8. Accept segment. Segments which are deemed to be sufficiently stable are
advanced in the test process as being ready for delivery to operational
sites. This is so noted in the CSRS and notification of acceptance is sent
to the process point of contact. The segment catalog is updated to reflect
that the segment is now available and operational sites are notified of
the new capability.

3.2.5 Segment Installation

Segments can be distributed to sites either electronically or by other distribution
media as appropriate. The MakeInstall tool is used to extract segments from
the CSRS and write them to tape or other media. The media is then manually
delivered to the site. Once received at a site, the site administrator can use the
installation tools in the System Administration application to load segments
directly onto individual workstations. The installation tools also allow the site
administrator to designate one or more workstations as segment servers, load
segments from tape onto the segment server disk(s), and then load workstations
across the site LAN from the segment servers. This greatly reduces installation
time because multiple workstations can be loaded simultaneously from disk
rather than serially from much slower tapes.

Installation can also be performed electronically through the RemoteInstall
tool. The RemoteInstall tool operates in either a "push" or a "pull" mode. In a
push mode, DISA initiates electronic transfer of segments from the CSRS to
operational sites. Segments can be installed in a push mode to either a segment
server or to an individual workstation. In a pull mode, the remote site initiates
the segment transfer. This is done by selecting the RemoteInstall tool from
the System Administrator application. Operating in this mode, the
RemoteInstall tool establishes a connection to the CSRS, provides the
operator with a list of segments which can be downloaded, and provides the
operator with the option of loading segments onto a segment server or installing
them directly onto a workstation.

Migration Considerations

DII COE I&RTS: Rev 2.0 October 23, 1995 3-17

3.3 Migration Considerations

The preceding section dealt with the development process as if it represents new
development. However, much of the present and planned functionality is
derived from existing legacy systems, not new development, and it simply is not
feasible in many cases to totally abandon a system and start over. A migration
strategy must be implemented which allows legacy systems to take advantage of
COE benefits. The strategy must simultaneously balance full COE compliance
versus implementation cost, rapid system deployment versus risk to system
stability, porting functionality versus new development, and preservation of
capabilities users already have versus duplication.

With the exception of subsection 3.2.2, the process outlined in the preceding
section applies directly to both new development and migration strategies, or
requires minimal customization. However, subsection 3.2.2, which describes the
segment development phase, requires a few additional special considerations.

It is helpful to remember that the overarching approach is to build on top of the
DII COE, not to decompose the COE into constituent parts to build on top of
some other architecture or body of software. In other words, the approach is to
integrate components from legacy systems into the COE, not to integrate the COE
into an existing legacy system. This perspective is fundamental to successful
integration.

The key to reusing the COE, and to achieve COE compliance, is the concept of
the public API. APIs represent the gateway through which segments may gain
access to COE services. Software developers and integrators must build to public
APIs rather than to a particular version of the COE, since the public APIs will be
preserved as the COE evolves. Applications must migrate away from private or
legacy APIs since they will not necessarily be supported in subsequent COE
releases.

Given this perspective of integrating components from a legacy system into the
COE, the following considerations will lead to a successful migration strategy.

¥ Create a requirements matrix. The matrix should identify requirements
already met by the COE, requirements that the COE meets but which
require modification, and unique requirements. This matrix represents the
development work which must be performed. Modifying COE
functionality requires negotiation with the DISA Chief Engineer. Mission
unique requirements may be met by porting legacy components, by other
mission segments external to the COE, or by COTS products.

Migration Considerations

3-18 October 23, 1995 DII COE I&RTS: Rev 2.0

¥ Develop a schedule for achieving Level 8 compliance (Full COE Compliance
Level). Compliance levels are defined in Chapter 2. Intermediate steps to
achieve a lower level of compliance are very useful as progress milestones
in the migration strategy. Segments must demonstrate Level 7 compliance
(Interoperable Compliance) prior to acceptance as an official DISA
fieldable product, and must show migration to Full COE Compliance
unless the segment is targeted to be phased out.

¥ Determine how the segment will be integrated with the Executive Manager. The
COE installation tools provide "hooks" to allow segment functions to be
accessed as either icons from a palette or as entries from a menu pull
down. The Style Guide contains guidelines for which approach is most
appropriate for segment features.

¥ Determine which account group(s) the segment will belong to. Chapter 2
explains that account groups are used as a first order approach to
dividing users into groups based on how they will use the system (system
administration, database administration, etc.). This is important because it
is the account group which determines the runtime environment for a
segment. The COE allows a segment to belong to multiple account groups
because some segments, such as a Printer segment, are of general utility
while others, such as a propagation loss tactical decision aid, are much
more specific to a mission application domain.

¥ Determine the required runtime environment extensions. The COE enforces the
principle that segments may extend a base environment according to a set
of well defined rules, but may not alter the environment in a way that
adversely impacts other segments. Chapter 5 elaborates on the rules for
how segments may extend the environment. The importance here is that
segments must separate the runtime environment from software
development preferences, and that identifying runtime environment
deltas is the key aspect of achieving Level 3 (Workstation Compliance)
compliance.

¥ Identify support services within the legacy system. These support services are
candidates for replacement by COE services and should be partitioned
away from the mission application through modularization of the code.

¥ Identify public COE APIs to be used. An initial step at migrating to use COE
services might be to create an interim layer that maps legacy APIs to their
corresponding COE APIs. This will often help in rapidly achieving
Level 6 (Intermediate COE Compliance) from Level 5 (Minimal COE
Compliance).

Migration Considerations

DII COE I&RTS: Rev 2.0 October 23, 1995 3-19

¥ Negotiate new APIs or modifications with the DISA Engineering Office.
Identification of missing functionality within the COE, or with a need for
modification can often serve to drive COE development.

¥ Build only to public APIs. Use of private APIs, or APIs from a legacy
system, may be expedient for an interim period. However, use of such
APIs will limit compliance to Level 6 or 7 and the associated risks are the
responsibility of the legacy system.

